RATT

Research directions

As in many other sciences, the balance between theoretical and instrumental radio astronomy has tended to evolve in cycles. The previous great instrumental revolution, prompted by the invention of the selfcal algorithm in the early 1980s, led to a blossoming of techniques, and the emergence of popular data reduction packages such as AIPS and Miriad. These have proven to be so capable that radio astronomy has lived off that success for the next two decades, with further practical advances being incremental rather than revolutionary.

Over the past several years, the demand for radical new techniques has grown sharply, with a “glut” of new-generation radio telescopes (ALMA, LOFAR, MeerKAT, PAPER, MWA, ASKAP) being built with a few years of one another, coupled with significant upgrades to older observatories (EVLA, e-MERLIN, Apertif), and with the SKA itself looming large on the horizon. Novel telescopes present new instrumental problems, which the techniques of the 80s can no longer address. Fortunately, developments such as the Measurement Equation have given us a rigorous mathematical framework for tackling such problems, with new software (e.g. MeqTrees) being developed to take advantage of this. The wheel has turned, and we have quietly entered another instrumental revolution.

In 2023, RATT’s work on forefront these subjects was recognized by the prestigious NRF Science Team Award.

Thanks to this, there’s no shortage of new, interesting and extremely challenging research projects to work on. Here are some example RATT Research Projects.

Recent Posts